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Thermodynamic Integration

In the Continuous Fractional Component Monte Carlo (CFCMC) method, the interactions of

the fractional molecule group are scaled using a scaling factor λ1,2. The fractional molecule

group has no interactions with the surrounding molecules when λ = 0, and has full interac-

tions when λ = 1. The ensemble average of the derivative of potential energy with respect

to λ can be used to calculate the excess chemical potential of species i according to3,4:

NV T ensemble : µex
i =

∫ 1

0

dλ

〈
∂A

∂λ

〉

NV T

=

∫ 1

0

dλ

〈
∂U

∂λ

〉

NV T
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NPT ensemble : µex
i =

∫ 1

0

dλ

〈
∂G

∂λ

〉

NPT

=

∫ 1

0

dλ

〈
∂U

∂λ

〉

NPT
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Lennard-Jones (LJ) and electrostatic interactions are scaled independently with two dif-

ferent scaling factors, λLJ and λel, respectively. Both λLJ and λel are a function of λ in

such a way that they are both zero when λ = 0 and both are unity when λ = 1. For the

implementation of the thermodynamic integration, we need to develop a scaling scheme that

uses continuous functions λLJ and λel so that the integration of Eqs. (S1) and (S2) can be

performed. Both λLJ and λel and the derivatives of these functions with respect to λ are

required to be continuous functions. The following equations provide the used expressions

for λLJ and λel, respectively:

λLJ =





20
9
λ 0.0 < λ < 0.4,

1− 100
9

(λ− 1
2
)2 0.4 < λ < 0.5,

1 0.5 < λ < 1.0
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λel =





0 0.0 < λ < 0.5,

100
9

(λ− 1
2
)2 0.5 < λ < 0.6,

−11
9

+ 20
9
λ 0.6 < λ < 1.0

(S4)

Fig. S1 shows λLJ and λel as a function of λ. With this scaling scheme, electrostatic interac-

tions are not “switched on" before the LJ interactions are at full strength (λLJ = 1)5. This

is chosen to avoid any overlap between the atoms of the fractional group and other atoms.

In this way, we protect the electrostatic interaction sites using the LJ interactions in order

to avoid atomic overlaps. This scaling scheme can be easily modified in the source code (file:

interactionlambda.f). It is important to note that both λLJ and λel should be continuous

functions of λ, and that λel should be zero when λLJ < 1.

The value of ∂U
∂λ

is computed by using the chain rule:

∂U

∂λ
=
∂ULJ

∂λLJ

∂λLJ
∂λ

+
∂Uel

∂λel

∂λel
∂λ

(S5)

The terms ∂λLJ

∂λ
and ∂λel

∂λ
in Eq. (S5) are computed using Eq. (S3) and Eq. (S4). Note that

with these definitions, ∂U
∂λ

= 0 at λ = 0.5. The terms ∂ULJ

∂λLJ
and ∂Uel

∂λel
are computed after

every MC trial move and we keep track of these quantities during the MC simulation. This

bookkeeping is implemented to avoid any additional computational cost. In the next two

subsections, exact analytic expressions are presented for the computation of ∂ULJ

∂λLJ
and ∂Uel

∂λel
.

Lennard-Jones Interactions

Intermolecular Lennard-Jones Interactions

The intermolecular LJ energy between interaction site i of molecule m and interaction site

j of molecule n is computed using:
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Figure S1: Scaling of LJ and electrostatic interactions as a function of λ for the computation
of
〈
∂U
∂λ

〉
which is used for thermodynamic integration in Brick-CFCMC. Red and blue lines

are the plots of Eq. (S3) and Eq. (S4), respectively.

ULJ,ij = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

(S6)

where εij is the minimum of the LJ potential between sites i and j, σij is the distance where

the LJ potential between sites i and j is zero, and rij is the distance between sites i and

j. When a site belonging to a fractional molecule is involved, the intermolecular LJ energy

between site i of molecule m and site j of molecule n is computed using a softcore potential6:

ULJ,ij = 4εijλLJ,t

[(
1

Y

)12/c

−
(

1

Y

)6/c
]

(S7)

where the total interaction scaling parameter is computed using the value of λLJ of sites m
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and n (λLJ,t = λLJ,mλLJ,n), and

Y = αLJ(1− λLJ,t)b + (rij/σij)
c (S8)

The values of αLJ, b and c can be adjusted1. In Brick-CFCMC, the default values for

these parameters are 0.5, 1 and 6, respectively. The derivative with respect to λLJ,m can be

calculated as:

∂ULJ,ij

∂λLJ,m
= 4εijλLJ,n

(
1

Y

)6/c [(
1

Y

)6/c

−1+
6λLJ,tbαLJ

cY
(1−λLJ,t)b−1

(
2

(
1

Y

)6/c

− 1

)]
(S9)

After every MC trial move, the values of both U and ∂ULJ,ij

∂λLJ,m
are updated.

Tail Corrections

The LJ energy tail correction of system is computed as7:

U tail
LJ =

1

2

∑

i,j

16πNiNjεij
V

(
σ12
ij

9r9cut
− σ6

ij

3r3cut

)
(S10)

where the sum ranges over all atom types in the system, Ni and Nj are the numbers of atoms

of types i and j, respectively (excluding atoms of fractional molecules), and V is the volume

of the simulation box. The factor 1/2 accounts for double counting of the interactions.

In principle, there are multiple ways of adding the contribution of the fractional molecule

to the tail correction energy. In Brick-CFCMC, this is achieved by substituting Ni →

Ni + λLJ,m × Nm,i and Nj → Nj + λLJ,n × Nn,j in Eq. (S10), where Nm,i and Nn,j are the
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numbers of atoms of types i and j within fractional molecules m and n, respectively7. The

derivative with respect to λLJ,m can be calculated as:

∂U tail
LJ

∂λLJ,m
=

1

2V

∑

i,j

[
16πεij(NjNm,i + λLJ,nNm,iNn,j)

[(
σ12
ij

9r9cut

)
−
(
σ6
ij

3r3cut

)]]
(S11)

Electrostatic Interactions

The analytic expressions for ∂Uel

∂λel
of electrostatic potentials may see trivial at first sight

because for linear charge scaling ∂Uel

∂λel
is proportional to λel 8,9. It is important to note that

such a scaling may result in numerical instabilities and atomic overlaps. The electrostatic

interaction potentials for the fractional molecule groups are defined in Brick-CFCMC in

such a way that they have an offset parameter (Q) to avoid any atomic overlaps (e.g. see

Eq. (S13)). Therefore, the compution of ∂Uel

∂λel
will require more complex expressions. The

next three subsections present the analytic expressions of ∂Uel

∂λel
for the Ewald summation10,

the Wolf method11, and the damped and shifted version of the Wolf method12.

Ewald Summation

The Ewald summation consists of a real-space part, exclusion part, self-energy part, and

Fourier-space part10,13,14. The real-space part is a damped electrostatic potential for the

short-ranged interactions. The exclusion accounts for all intramolecular interactions for

which electrostatic interactions should not be considered (i.e. between atoms that interact

with a bonded interaction potential such as bond-stretching or bond-bending). The self-

energy part considers the self-electrostatic energy of all charges, and the Fourier-space part

handles the long-range electrostatic interactions by using a Fourier transform. The real-space

energy of the Ewald summation between sites i and j of molecules m and n is computed as:
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Ureal,ij = qiqj
erfc(αelrij)

rij
(S12)

where αel is the damping parameter, erfc(x) is the complementary error function and rij

is the distance between the interaction sites i and j. If one of the sites involved in the

interaction belongs to a fractional molecule group, then the real-space energy of the Ewald

summation is computed as:

Ureal,ij = λel,tqiqj
erfc(αel(rij +Q))

rij +Q
(S13)

where the total fractional scaling factor for electrostatic interactions is computed by multi-

plying the electrostatic interaction scaling factors of molecules m and n (λel,t = λel,mλel,n).

Q is the offset parameter computed as Q = βel(1− λel,t) where βel is equal to 0.01 Å. In this

way, there is no divergence of the interaction potential, even when rij = 0. The exclusion

term of the Ewald summation between atoms i and j in molecule m is obtained using15,16:

Uexclusion,ij = qiqj
erfc(αelrij)− 1

rij
(S14)

When a fractional molecule is involved, the exclusion term is computed as follows:

Uexclusion,ij = λel,tqiqj
erfc(αel(rij +Q))− 1

rij +Q
(S15)

The self-energy term of the Ewald summation is computed as:

Uself =
−αel√
π

∑

n

∑

i

λ2el,nq
2
i,n (S16)

where index n runs over all the molecules in the simulation box and index i runs over all
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atoms in molecule n, and λel,t = λ2el,m. The Fourier-space term of the Ewald summation is

computed as10:

UFourier =
1

V

∑

k

F (k)
[
(
∑

i

λel,iqicos(ik.ri))
2 + (

∑

i

λel,iqisin(ik.ri))
2
]

(S17)

in which indices k and i run over all k-vectors (except for the zero wavevector k = (0, 0, 0)3)

and all atoms in the system, respectively, and:

F (k) =
4π

|k|2 exp

[ |k|2
4αel

]
(S18)

In Eq. (S17), the terms λel,i are the electrostatic interaction scaling factors of atoms i.

These terms were added to this equation to account for the contribution of the fractional

molecules to the Fourier-space part of the Ewald summation. The values of λel,i are set to

1 for atoms of whole molecules (i.e. molecules that always have a full interaction strength

with the surrounding molecules7) and for site belonging to fractional molecules, λel,i = λel.

The bookkeeping for the real-space and exclusion parts of the Ewald summation is similar

to the bookkeeping of the LJ interactions as these are all pairwise interactions3. The book-

keeping of the self-energy term is trivial as this term does not depend on the atomic positions.

The bookkeeping of the Fourier-space part of the Ewald summation is more complicated as it

is not a pairwise interaction. In Brick-CFCMC, the bookkeeping for the Fourier-space term

of the Ewald summation is performed according to Ref.13. During the simulation, we keep

track of the values of the terms in
∑

i λel,iqicos(ik.ri) and
∑

i λel,iqisin(ik.ri) of Eq. (S17).

For each wavevector k, this requires the storage of two floats. After every MC trial move,

the values of the terms in
∑

i λel,iqicos(ik.ri) and
∑

i λel,iqisin(ik.ri) are updated by adding

the contribution of the new configuration and subtracting the contribution of the old con-

figuration. This updating is performed for each wavevector seperately.
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The derivative of the real-space part of the Ewald summation with respect to the scaling

factor of (fractional) molecule m λel,m is obtained as:

∂Ureal,ij

∂λel,m
= λnqiqj

[
erfc(αel(rij +Q))

rij +Q
+ λel (X(rij))

]
(S19)

where X(rij) is computed using:

X(r) =
βel

(r +Q)2

[
(r +Q)

(
2αel√
π

)
exp

[
−α2

el(r +Q)2
]

+ erfc(αel(r +Q))

]
(S20)

The derivative of the exclusion part of the Ewald summation with respect to λel,m is

calculated according to:

∂Uexclusion,ij

∂λel,m
= 2λel,mqiqj

[
erfc(αel(rij +Q))

rij +Q
+ λel,t (X(rij))−

rij +Q+ λel,tβel
(rij +Q)2

]
(S21)

where X(r) follows Eq. (S20). The derivative of the self-energy part with respect to λel,m of

fractional molecule m becomes:

∂Uself

∂λel,m
= 2λel,m

−αel√
π

∑

j

q2j (S22)

in which index j runs over all atoms in the fractional molecule m. The derivative of the

Fourier-space part of the Ewald summation with respect to λel,m is:
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∂UFourier

∂λel,m
=

2

V

∑

k

F (k)

[
(
∑

i

λel,iqicos(ik.ri))× (
∑

j

qjcos(ik.rj)))+

(
∑

i

λel,iqisin(ik.ri))× (
∑

j

qjsin(ik.rj)))

]
(S23)

in which indices k, i and j run over all k-vectors (except for the zero wavevector k = (0, 0, 0)),

all atoms in the system and all atoms of molecule m, respectively. F (k) follows Eq. (S18)

and V is the volume of the simulation box. The bookkeeping for the computation of

∂UFourier

∂λel,m
is performed in the same way as the bookkeeping for the Fourier-space energy of

the Ewald summation. The values of the terms in (
∑

i λel,iqicos(ik.ri)) × (
∑

j qjcos(ik.rj))

and (
∑

i λel,iqisin(ik.ri))× (
∑

j qjsin(ik.rj)) are calculated at the start of the simulation and

stored in memory. The values of the terms in (
∑

i λel,iqicos(ik.ri)) × (
∑

j qjcos(ik.rj)) and

(
∑

i λel,iqisin(ik.ri))×(
∑

j qjsin(ik.rj)) are updated after every MC trial move by subtracting

the contribution of the old configuration and adding the contribution of the new configura-

tion. This is done for each wavevector. Because this is performed only for the atoms that

have different positions in the old and the new configurations, this does not lead to any

additional computational cost.

Wolf Method

The Wolf method uses the strong screening of the electrostatic interactions in a system to

calculate electrostatic potential energy11. Because of this strong screening, it works very well

for dense (liquid) systems17,18 while it does not work well for the less dense (gas) systems due

to less effective screening of electrostatics13,15. All interactions in the Wolf method are either

pairwise interactions (real-space and exclusion parts) or constant (self-energy part) and no

Fourier transform is involved. This makes this method computationally more efficient than

the Ewald summation15. The short ranged real-space electrostatic energy between site i of

S10



molecule m and site j of molecule n is computed as:

Ureal,ij = qiqj

[
erfc(αelrij)

rij
− erfc(αelrcut)

rcut

]
(S24)

where erfc(x) is the complementary error function, rij is the distance between sites i and

j, rcut is the cutoff radius, and αel is the damping parameter. When a site of a fractional

molecule group is involved in this type of interaction, the following expression is used to

compute the real-space electrostatic energy between site i of moleculem and site j of molecule

n.

Ureal,ij = λel,tqiqj

[
erfc(αel(rij +Q))

rij +Q
− erfc(αel(rcut +Q))

rcut +Q

]
(S25)

in which λel,t = λel,mλel,n, and the offset term Q is:

Q = βel(1− λel,t) (S26)

where βel is taken as 0.01 Å. The derivative of the real-space part of the Wolf method with

respect to λel,m is obtained as:

∂Ureal,ij

∂λel,m
= λnqiqj

[
erfc(αel(rij +Q))

rij +Q
− erfc(αel(rcut +Q))

rcut +Q
+ λel,t (X(rij)−X(rcut))

]
(S27)

where the term X(r) follows from Eq. (S20).

The exclusion term of the Wolf method between sites i and j of molecule m is computed

as:

Uexclusion,ij = qiqj

[
erfc(αelrij)− 1

rij
− erfc(αelrcut)

rcut

]
(S28)

When molecule m is in a fractional molecule group, the following expression is used for the

exclusion term:

Uexclusion,ij = λel,tqiqj

[
erfc(αel(rij +Q))− 1

rij +Q
− erfc(αel(rcut +Q))

rcut +Q

]
(S29)
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in which λel,t = λ2el,m, and the derivative with respect to λel,m is calculated from:

∂Uexclusion,ij

∂λel,m
= 2λel,mqiqj

[
erfc(αel(rij +Q))

rij +Q
− erfc(αel(rcut +Q))

rcut +Q
+

λel,t (X(rij)−X(rcut))−
rij +Q+ λelβel

(rij +Q)2

]
(S30)

The self-energy term of the Wolf method is computed from:

Uself = −
(

erfc(αelrcut)

2rcut
+
αel√
π

)∑

n

∑

i

λ2el,nq
2
i,n (S31)

where index n runs over all molecules in the simulation box and index i runs over all atoms

in molecule n. The derivative for the self-energy term of the Wolf method is computed as

follows:
∂Uself

∂λel,m
= −2λel,m

(
erfc(αelrcut)

2rcut
+
αel√
π

)∑

j

q2j (S32)

where index j runs over all atoms in fractional molecule m.

Damped and Shifted Version of the Wolf Method

The Wolf method can be used to accurately calculate electrostatic interactions, however,

artificial structuring around the cutoff distance is a potential problem19. Fennell and Gezel-

ter12 solved this issue with a modification to the real-space term of the Wolf method. The

real-space electrostatic energy between site i of molecule m and site j of molecule n in the

damped and shifted (DSF) version of the Wolf method is computed as15,16:

S12



Ureal,ij = qiqj

[
erfc(αelrij)

rij
− erfc(αelrcut)

rcut
+

(
erfc(αelrcut)

r2cut
+

2αel√
π

exp[−α2
elr

2
cut]

rcut
(rij − rcut)

)]
(S33)

where erfc(x) is the complementary error function, rij is the distance between the sites i and

j, rcut is the cutoff radius, and αel is the damping parameter. In this way, both Ureal,ij and

its derivative with respect to rij are continuous around rcut. When either one or both of the

sites involved in the interaction belong to a fractional molecule group, the real-space term

in DSF Wolf method is computed from:

Ureal,ij = λel,tqiqj

[
erfc(αel(rij +Q))

rij +Q
− erfc(αel(rcut +Q))

rcut +Q
+

(
erfc(αelrcut)

r2cut
+

2αel√
π

exp[−α2
elr

2
cut]

rcut
(rij − rcut)

)]
(S34)

where the termQ follows from Eq. (S26). The total scaling factor for electrostatic interactions

λel,t is calculated using the value of λel of the molecules m and n as λel,t = λel,mλel,n. The

derivative of the DSF real-space term with respect to λm is calculated using:

∂UDSF
real,ij

∂λel,m
= λel,nqiqj

[
erfc(αel(rij + βel(1− λel,t)))

rij + βel(1− λel,t)
− erfc(αel(rcut + βel(1− λel,t)))

rcut + βel(1− λel,t)
+

(
erfc(αelrcut)

r2cut
+

2αel√
π

exp[−α2
elr

2
cut]

rcut

)
(rij − rcut)+

λel,t (X(rij)−X(rcut))

]
(S35)

where the term X(r) follows from Eq. (S20). The exclusion term of the DSF version of the

Wolf method between sites i and j of the molecule m is computed using:

Uexclusion,ij = qiqj

[
erfc(αelrij)− 1

rij
− erfc(αelrcut)

rcut

]
(S36)

The exclusion term of DSF version of the Wolf method between sites i and j of molecule m,

S13



when m is a fractional molecule, is computed as:

Uexclusion,ij = λel,tqiqj

[
erfc(αel(rij +Q))− 1

rij +Q
− erfc(αel(rcut +Q))

rcut +Q

]
(S37)

where λel,t = λ2el,m. The derivative of the DSF exclusion term with respect to λel,m is

calculated from:

∂Uexclusion,ij

∂λel,m
= 2λel,mqiqj

[
erfc(αel(rij +Q))

rij +Q
− erfc(αel(rcut +Q))

rcut +Q
+

λel,t (X(rij)−X(rcut))−
rij +Q+ λelβel

(rij +Q)2

]
(S38)

where X(r) follows from Eq. (S20). The self-energy term of DSF version of the Wolf method

is computed as:

Uself = −
(

erfc(αelrcut)

2rcut
+
αel√
π

)∑

n

∑

i

λ2n,elq
2
i,n (S39)

in which n runs over all molecules in the system and i runs over all atoms in molecule n. The

derivative of the self-energy term with respect to λel,m of fractional molecule m becomes:

∂Uself

∂λel,m
= −2λel,m

(
erfc(αelrcut)

2rcut
+
αel√
π

)∑

j

q2j (S40)

in which index j runs over all atoms in fractional molecule m.

Hybrid Monte Carlo Trial Moves

The hybrid trial moves use a short Molecular Dynamics (MD) trajectory to simultaneously

displace or rotate all molecules inside the simulation box. These trial moves are more efficient

than the single-molecule trial moves in inducing a collective motion in the fluid20–22. The

interaction potential to generate the short MD trajectories does not need to be the actual

interaction potential. It can be another interaction potential still resembling the actual one
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but computationally cheaper3,20.

Hybrid Translation

In the hybrid MC translation trial move, a short MD simulation in the NVE ensemble is

performed with a specified time step (∆t) and trajectory length (Nstep). Although there are

no restrictions on the choice of ∆t and Nstep, these parameters influence the efficiency of

the sampling. It is therefore recommended that the optimal values of these parameters are

chosen from short test runs, such that an average acceptance probability of ca. 50% and a

maximum average displacement per unit of CPU time are achieved. All molecules are kept

rigid, and the trial move is performed collectively (for all molecules) using the center of mass

motion. To integrate the equations of motion, the velocity Verlet algorithm23,24 is used,

which is time reversible and area-preserving (symplectic)3. This trial move is performed as

follows3,24–26:

1. Center of mass velocity vectors, vi, are randomly generated for each molecule i, where

the vector components are drawn from a normal distribution with the mean value equal

to 0 and a variance of 1.

2. The kinetic energy of translation of the old configuration is calculated as:

Ktrans
old =

N∑

i=1

1

2
miv

2
i,old (S41)

where i is the molecule number, N is the total number of molecules in the system, and

mi is the mass of molecule i.

3. All velocities are scaled by the factor
√

3NkBT/2Ktrans
old which adjusts the kinetic energy

of the system according to the equipartition theorem21. The kinetic energy of the

system (Ktrans
old ) is then recomputed using Eq. (S41).
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4. The resultant force, Fi, acting on each molecule i is computed. To reduce the com-

putational costs, an approximation can be used for Fi (rather than its precise value),

e.g., obtained from a computationally cheaper method, e.g., the damped and shifted

version of the Wolf method instead of the Ewald summation. In principle, such an

approximation would maintain a correct phase-space sampling3.

5. The velocities of all molecules are updated to a half time step:

vi,old = vi,old +
Fi

2mi

∆t (S42)

6. The center-of-mass position vectors of all molecules are updated:

ri,new = ri,old + vi,old∆t (S43)

7. Using the new center-of-mass positions (ri,new), all atomic coordinates are updated.

8. The resultant forces on all molecules are recomputed based on the new atomic positions

ri,new.

9. The velocities are updated to the full time step:

vi,new = vi,old +
Fi

2mi

∆t (S44)

10. For an MD trajectory of length Nstep, steps 5-9 are repeated for Nstep − 1 times.

11. The kinetic energy of the new configuration is calculated as:

Ktrans
new =

N∑

i=1

1

2
miv

2
i,new (S45)
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12. The trial move is accepted or rejected according to the following acceptance rule3:

acc(o→ n) = min
(
1, exp[−β(∆U + ∆Ktrans)]

)
(S46)

where o and n denote the old and new (initial and final) configurations on the MD

trajectory, and ∆U and ∆Ktrans are the differences in potential energy and translational

kinetic energy, respectively, between the old and new configurations. β is defined as

1/(kBT ), where kB is the Boltzmann constant, and T is the absolute temperature.

Hybrid Rotation

In the hybrid rotation trial move, collective rotation of molecules as rigid bodies is per-

formed using a short MD simulation in the NVE ensemble. The time step size (∆t) and

trajectory length (Nstep) of this MD run are chosen to maximize the efficiency of the sam-

pling. For the rigid body rotation of molecules, the velocity Verlet-based algorithm of Miller

et al.27 (NOSQUISH) is used, which is symplectic and time reversible. At every time step,

all molecules are rotated according to the total torque acting on the molecules, and only

intermolecular interactions are taken into account to compute the forces and torques.

In the first step, the moment of inertia tensor, Ii, of each molecule i about its cen-

ter of mass is computed. To obtain the principal moments of inertia, the eigenvalues and

eigenvectors of the inertia tensors are computed using the Jacobi method28. The computed

eigenvectors indicate the direction of the principal axes, and the corresponding eigenvalues

determine the values of inertia moments in these directions. The body frame of reference

is taken to be the principal axes of each molecule, denoted by x̂, ŷ, and ẑ, whereas the

laboratory frame axes are specified by x, y, and z. The principal (diagonalized) moment

of inertia tensor of molecule i is denoted by Îi, and its diagonal elements (eigenvalues of

the Ii tensor), are represented by Îx̂x̂,i, Îŷŷ,i, and Îẑẑ,i. The principal axes are set such that

Ix̂x̂,i > Iŷŷ,i > Iẑẑ,i. The quaternion 4-vector, q(4)
i = (q0,i q1,i q2,i q3,i)

T is then computed for
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the body frame of each molecule i, based on the direction of the principal axes. Subsequently,

the rotation matrix, Ri, for each molecule i is calculated according to:

Ri =




q20,i + q21,i − q22,i − q23,i 2(q1,iq2,i − q0,iq3,i) 2(q1,iq3,i + q0,iq2,i)

2(q1,iq2,i + q0,iq3,i) q20,i − q21,i + q22,i − q23,i 2(q2,iq3,i − q0,iq1,i)

2(q1,iq3,i − q0,iq2,i) 2(q2,iq3,i + q0,iq1,i) q20,i − q21,i − q22,i + q23,i




(S47)

In the algorithm outlined here, a variable X computed in the body frame is denoted by

X̂, whereas it lacks the hat symbol when designated in the laboratory frame. The following

steps are performed in the hybrid rotation trial move26,27,29:

1. Angular velocity vectors, ω̂i, are randomly generated for every molecule i in its body

frame, where each component of the angular velocity (ωx̂,i, ωŷ,i, and ωẑ,i) is obtained

from a normal distribution with mean and variance values of 0 and 1, respectively.

2. The rotational kinetic energy of the system in the old configuration is computed ac-

cording to:

Krot
old =

N∑

i=1

1

2
(Ix̂x̂,iω̂

2
x̂,i + Iŷŷ,iω̂

2
ŷ,i + Iẑẑ,iω̂

2
ẑ,i) (S48)

where i is the molecule number, and N is the total number of molecules in the system.

3. Similar to the hybrid translation trial move, the angular velocities of all molecules

are scaled by a factor of
√

3NkBT/2Krot
old to yield the correct temperature and kinetic

energy. The rotational kinetic energy (Krot
old) is then recomputed using Eq. (S48).

4. The positions of each atom j in molecule i, with respect to the center-of-mass of i, are

computed in the body frame, using the inverse of the rotation matrix of molecule i:

r̂ji = R−1i rji (S49)

where rji is the position vector of atom j in molecule i, with respect to the center-of-
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mass of i, in the laboratory frame.

5. The resultant torque vector on each molecule i with Ni atoms, Ti, is calculated about

its center of mass in the laboratory frame:

Ti =

Ni∑

j=1

∑

k

[rji × Fjk] (S50)

in which the indices j and k run over all atoms in molecule i and atoms in all other

molecules except i, respectively. rji is the position vector of atom j with respect to

the center-of-mass of molecule i, and Fjk denotes the force vector acting upon atom j

of molecule i by atom k of another molecule. An approximate value of the force can

be used in Eq. (S50) to reduce the computational costs.

6. The resultant torque on each molecule i in its body frame, T̂i, is computed using the

transposed rotation matrix:

T̂i = RT
i Ti (S51)

7. The 4-vector quaternion torque of each molecule i in its body frame, T̂(4)
q,i, is computed

according to:

T̂
(4)
q,i = 2MiT̂

(4)
i (S52)

where T̂(4)
i = (0 T̂x̂,i T̂ŷ,i T̂ẑ,i)

T is the 4-vector torque on molecule i in its body frame,

and T̂x̂,i, T̂ŷ,i, and T̂ẑ,i as the components of the T̂i vector. Mi is a matrix consisting

of the quaternion components of the body frame of molecule i:

Mi =




q0,i −q1,i −q2,i −q3,i
q1,i q0,i −q3,i q2,i

q2,i q3,i q0,i −q1,i
q3,i −q2,i q1,i q0,i



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8. The angular momentum of every molecule i, L̂i is computed in its body frame using

the principal moment of inertia tensor and the angular velocity:

L̂i = Îiω̂i (S53)

9. The 4-vector conjugate quaternion momentum of each molecule i, P(4)
q,i, is computed

as:

P
(4)
q,i = 2MîL

(4)

i (S54)

where L̂
(4)

i = (0 L̂x̂,i L̂ŷ,i L̂ẑ,i)
T is the 4-vector angular momentum of molecule i in its

body frame, and L̂x̂,i, L̂ŷ,i, and L̂ẑ,i are the components of the L̂i vector. For simplicity,

the 4-vectors P
(4)
q,i and q

(4)
i are denoted by Pq,i and qi, respectively, in the following

steps.

10. The quaternion momentum of every molecule i is updated to a half time step:

Pq,i(t+
∆t

2
) = Pq,i(t) +

∆t

2
T̂q,i(t) (S55)

11. The following steps in Eqs. (S56) to (S65) are repeated for m times (e.g., m = 1026).

A larger value of m increases the accuracy of the scheme at the expense of a larger

computational cost29. For each molecule i, the quaternions are updated to the full

time step:
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Pq,i = cos(φ3δt/2)Pq,i + sin(φ3δt/2)D3Pq,i (S56)

qi = cos(φ3δt/2)qi + sin(φ3δt/2)D3qi (S57)

Pq,i = cos(φ2δt/2)Pq,i + sin(φ2δt/2)D2Pq,i (S58)

qi = cos(φ2δt/2)qi + sin(φ2δt/2)D2qi (S59)

Pq,i = cos(φ1δt)Pq,i + sin(φ1δt)D1Pq,i (S60)

qi = cos(φ1δt)qi + sin(φ1δt)D1qi (S61)

Pq,i = cos(φ2δt/2)Pq,i + sin(φ2δt/2)D2Pq,i (S62)

qi = cos(φ2δt/2)qi + sin(φ2δt/2)D2qi (S63)

Pq,i = cos(φ3δt/2)Pq,i + sin(φ3δt/2)D3Pq,i (S64)

qi(t+ ∆t) = cos(φ3δt/2)qi + sin(φ3δt/2)D3qi (S65)

where δt = ∆t/m, φk = (PT
q,iDkqi)/(4Îkk,i) (for k = 1, 2, 3), in which Î11,i = Îx̂x̂,i,

Î22,i = Îŷŷ,i, and Î33,i = Îẑẑ,i, and:

D1qi = (−q1,i q0,i q3,i −q2,i)T (S66)

D2qi = (−q2,i −q3,i q0,i q1,i)
T (S67)

D3qi = (−q3,i q2,i −q1,i q0,i)
T (S68)

DkPq,i (k = 1, 2, 3) are similarly computed, where the quaternion components are

replaced by the corresponding components of the quaternion momenta:
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D1Pq,i = (−Pq,1,i Pq,0,i Pq,3,i −Pq,2,i)T (S69)

D2Pq,i = (−Pq,2,i −Pq,3,i Pq,0,i Pq,1,i)
T (S70)

D3Pq,i = (−Pq,3,i Pq,2,i −Pq,1,i Pq,0,i)
T (S71)

12. The new rotation matrix Ri is computed for each molecule i, using Eq. (S47), based

on the new quaternions obtained after applying Eqs. (S56) to (S65).

13. The new positions of atoms are computed using the new rotation matrix:

rji = Rir̂ji (S72)

where rji and r̂ji are the position vectors of atom j in molecule i, with respect to the

center-of-mass of i, in the laboratory and body frames (r̂ji is computed in step 4),

respectively. Using rji and the center-of-mass coordinates, the positions of the atoms

are updated.

14. The angular momentum and angular velocity of every molecule i are updated to a half

time step:

L̂
(4)

i =
1

2
M−1

i Pq,i

ω̂k,i = L̂k,i/Îkk,i (k = 1, 2, 3)

(S73)

in which k = 1, k = 2, and k = 3 correspond to the x̂, ŷ, and ẑ axes, respectively.

15. The new torques in laboratory frame and body frame, as well as the new quaternion

torques are computed at half time step, as demonstrated in steps 5-7.
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16. The quaternion momentum of each molecule i is updated from a half time step (output

of step 11) to a full time step:

Pq,i(t+ ∆t) = Pq,i(t+
∆t

2
) +

∆t

2
T̂q,i(t+

∆t

2
) (S74)

17. The new angular momenta and angular velocities are computed for all molecules at a

full time step, similar to step 14.

18. For an MD trajectory of length Nstep, steps 10-17 are repeated for Nstep − 1 times.

19. The new rotational kinetic energy of the system, Krot
new, is computed based on the final

angular velocities:

Krot
new =

N∑

i=1

1

2
(Îx̂x̂,iω̂

2
x̂,i + Îŷŷ,iω̂

2
ŷ,i + Îẑẑ,iω̂

2
ẑ,i) (S75)

where i is the molecule number and N is the total number of molecules in the system.

20. The trial move is accepted or rejected according to the acceptance rule3:

acc(o→ n) = min
(
1, exp[−β(∆U + ∆Krot)]

)
(S76)

where o and n denote the old and new (initial and final) configurations on the MD

trajectory, and ∆U and ∆Krot are the differences in potential energy and rotational

kinetic energy, respectively, between the old and new configurations. β is defined as

1/(kBT ), where kB is the Boltzmann constant, and T is the absolute temperature. For

more details on this rigid body dynamics integrator, the reader is referred to Refs.27

and29.
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Simulation Details for the Case Studies

Thermodynamic Integration

All simulations were performed using Brick-CFCMC7. For the computation of µex
NaCl, the

SPC/E30 and Joung-Cheatham31 force fields were used for water and sodium chloride, re-

spectively. The force field parameters used in the simulations are listed in Table S1. 101

independent MC simulations with different and fixed values of λ were performed at 298 K

and 1 bar, in the NPT ensemble. Initial configurations for these simulations were generated

with a box length of 20.8Å, using 300 water molecules and a fractional group consisting of

one sodium ion and one chloride ion. Atomic overlaps, caused by the random generation of

initial configurations were removed by 103 initialization MC cycles, where only translation

and rotation trial moves were used. Equilibration and production stages of the simulations

were carried out, each for 106 MC cycles. In Brick-CFCMC, a single MC cycle consists of

N MC trial moves where N is the number of molecules in the simulation box. During the

equilibration and production cycles, different trial moves were performed with fixed proba-

bilities: translations (49.49%), hybrid translations (0.01%), rotations (49.5%), and volume

changes (1%). LJ interactions were truncated at 10 Å. Analytic tail corrections21 were ap-

plied, and the Lorentz-Berthelot mixing rules21 were used to compute interaction parameters

for different atom types. For electrostatic interactions, the damped and shifted version of

the Wolf method was used12. The Wolf method parameters were set to 8.25Å and 0.22 Å−1

for the cutoff radius and damping parameter, respectively. For the simulations using the

Ewald summation for electrostatic interactions, a relative precision of 10−6 was used. In

post-processing,
〈
∂U
∂λ

〉
was integrated using a tool provided with Brick-CFCMC. This tool

fits a spline to
〈
∂U
∂λ

〉
, and subsequently integrates the spline from λ = 0 to λ = 1 using the

trapezoidal rule.
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Table S1: Force field parameters used in the MC simulations of NaCl/water solutions. For
water and NaCl molecules, the SPC/E30 and Joung-Cheatham31 force fields were used,
respectively.

Atom ε/kB / [K] σ / [Å] q / [e−]

OH2O 78.177 3.166 -0.8476
HH2O 1.0000 1.000 0.4238

NaNaCl 177.46 2.159 1.0000
ClNaCl 6.4340 4.830 -1.0000

Hybrid Translation Trial Moves

The optimal time step size (∆t) for the hybrid translation trial move was obtained for a

system of a choline chloride/urea (ChClU) deep eutectic solvent (DES) at 338.15 K and 1

bar, in the NPT ensemble. The Generalized AMBER force field (GAFF)32 parameters were

used for the DES, and the charges of cation and anion were scaled by 0.833. All force field

parameters are tabulated in the Supporting Information of Ref.34. 100 urea molecules and

50 choline chloride ion pairs were used in the simulations. A well-equilibrated configuration

of ChClU was used as initial configuration. Independent runs were performed with different

values of the time step, and the average acceptance probabilities and displacements were

computed. All runs consisted of 500 production MC cycles (no equilibration), during which

only the hybrid translation trial move was carried out with a trajectory length of 5 timesteps.

The Ewald summation method10, with k = 8 and a damping parameter of α = 0.3Å−1

was used to compute long-range electrostatic energies. For the computation of electrostatic

forces in the short MD trajectories, the damped, shifted Wolf method12 was used, which

is computationally less expensive than the Ewald summation. The damping parameter of

the damped, shifted Wolf method was set to 0.2 Å−1. The cutoff radius was set to 10Å for

all short-range energies and forces. Analytic tail corrections21 were used for the long-range

LJ interactions, and the Lorentz-Berthelot mixing rules21 were applied to compute the LJ

interactions between non-identical atom types.

S25



(a)

(b)

Figure S2: (a) The weight function and (b) probability distribution of the NaCl fractional
group as a function of λ when making an attempt to compute the excess chemical potential
of NaCl at infinite dilution in water from a single simulation. From subfigure (a), it can be
seen that the biasing function reaches up to ca. 90 kBT . As a result, same interval with very
large biasing function is not sampled at all. From subfigure (b), it can also be seen that
only very high λ values are sampled. To obtain a flat probability distribution of λ, multiple
simulations with confined λ-space will be required.
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Figure S3: The value of
〈
∂U
∂λ

〉
as a function of λ for infinitely diluted NaCl in water at 298

K and 1 bar. In these simulations, Ewald summation with a relative precision of 10−6 was
used for the electrostatic interactions. The red circles represent the fitted spline while the
blue line represents the values of

〈
∂U
∂λ

〉
.
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Figure S4: Intermolecular potential energy as a function of the number of MC cycles for dif-
ferent fractions of hybrid MD/MC trial moves. The other trial moves are single-molecule dis-
placement and rotations. The numbers of attempted rotations and translation are equal, both
for hydrid MD/MC trial moves and single-molecule trial moves. The simulations were per-
formed for choline chloride/urea DES at 323 K in NVT ensemble. For both hybrid MD/MC
translation and hybrid MD/MC rotation moves, a timestep of 1 fs and a trajectory length of
Nstep = 10 were used. The results show that the use of hybrid MD/MC moves significantly
facilitates the equilibration of the simulation box.
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